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BREAKTHROUGH ENERGY COALITION

“Our primary goal with the Coalition is as much to
accelerate progress on clean energy as it is to make a
profit” — Bill Gates
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Economics of Waste Conversion
Low energy density
Highly distributed or stranded
Of low (perceived) value
Of high untapped potential
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Economic lessons from the solar,
wind, and ethanol industries

* Experience curves: every doubling of production
reduces capital costs by a fixed percentage

e System optimization: operating costs decrease
through learning-by-doing

* Technological innovation: improvements in
efficiency and resource use reduce costs

* Manufacturing improvements: improvements in
design, material use, automation reduce cost
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Solar Energy Manufacturing

PV EXPERIENCE CURVE, 1976-2012

2012 $/W
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‘ PV MODULE PRICES HAVE
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MNote: Prices inflation indexed to US PPI. Source: Paul Maycock, Bloomberg New Energy Finance
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Wind Energy Manufacturing

Wind power projects indicate ‘sweet’ spot for wind
farms (5 — 20 MW)
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Installed $ per kilowatt

Source: 2009 Wind Technologies Market Report. U.S. DOE



Learning Rates Across Industries
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Industries that adopt mass production have
learning rates of 18% vs. 6% for economies-of-scale

Daugaard et al. 2014
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Historical Ethanol Capital Cost
Trends in the US
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How do we increase learning rates of
waste conversion?

Could small, modular, TG BoSealt o the Woods
distributed systems unlock '
biofuels’ potential?
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The Fast Pyrolysis Platform

Fast pyrolysis enables

small scale (200 ton

per day) production

of:

- Hydrocarbon
chemicals,

- Alternative
biochemicals, and

- Fuels

- Biochar for carbon
sequestration

- Biochar for soail
amendment
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Market-Based Product Portfolios
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Bio-oil co-firing fuel (BCF)

____ Bio-char 2
Fluidized bed pyrolyzer at ISU Land application of bio-char
Bio-oll _ «  Providing nutrients
(heavy end fraction) _ _ _
* Improving water retention capacity

* Reducing soil bulk density

BCF power meets Clean Power Plan

Coal plant emissions reductions at a
cost of ¢9.81/kWh

Bio-oil co-firing fuel
* Overcoming biomass and coal co-firing limits Dang et al. 2015
« Without usual problems of boiler derating and ash fouling




Wet Feedstock Conversion
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Biofuel Production Cost ($/gal)
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Wet Feedstocks Delivered Costs Range between
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Economic lessons from the solar,
wind, and ethanol industries

* Experience curves: every doubling of production
reduces capital costs by a fixed percentage

e System optimization: operating costs decrease
through learning-by-doing

* Technological innovation: improvements in
efficiency and resource use reduce costs

* Manufacturing improvements: improvements in
design, material use, automation reduce cost
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Economics of Waste Conversion

Low energy density
Highly distributed or stranded
Of low (perceived) value

Of high untapped potential
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Benefits of Small Modular Design
L

Locational flexibility
Investment flexibility
Operational flexibility
Management flexibility
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Learning Rates

Biofuel Production Costs ($/gal)
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Levels of Biofuel Pathway Experience

Date of First Commercial-scale Implementation

Gasification and F-T synthesis

Syngas Fuel N
cleaning synthesis
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e

Engineering
Design

Small modular designs enable
novel platforms and products.

The engineering challenge differs
from large-scale systems:

* Design for manufacturability
* Lean manufacturing

* Resource sustainability
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Engineering Design
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Engineering Design Market
Analysis
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The role of
lowa State University

With strengths in Mechanical, and Manufacturing Engineering,
Engineering Management, and Renewable Energy Research,

the goal of this initiative is to
focus on the development of the key link in the biofuels supply chain,
the design and development of advanced energy manufacturing technologies to
reduce the cost of biofuel production facilities.
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